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TE-MODE SOLUTIONS FOR DIELECTRIC-SLAB
CENTER-LOADED RIDGED WAVEGUIDE

INTRODUCTION

Applications exist which require dielectric or ferrite slab center loaded rectangular
waveguide to be used in conjuction with ridged waveguide.. Transitions can be made with

stepped matching transformers; these transformers are appropriate sections of a composite of
the two different waveguide configurations. The objective of this report is to present an analysis
of such dielectric slab center loaded ridged waveguide and to provide a method of obtaining
equations for the TE,,0 propagation characteristics, thus facilitating transformer design.

BACKGROUND

Because higher order modes can easily cause mismatch and transmission loss spikes,
waveguide operation is generally limited to a frequency band where only the principal mode
may propagate. Conventional rectangular waveguide has a theoretical two-to-one, or single oc-
tave, principal-mode-only frequency bandwidth; in practice, the useable bandwidth is less be-
cause of large attenuation near the cut-off frequency.

Ridged waveguide, particularly double-ridged waveguide, is commonly used when larger
bandwidths are required at high power levels. A frequency range of more than four to one
between the cut-off frequencies of the TE 0 and TE20 modes can easily be obtained [1,21 using
double-ridged waveguide. Similar bandwidths can be obtained with dielectric slab center loaded
rectangular waveguide [3,4,51. Both ridged and slab loaded waveguide achieve broad
bandwidths by adding large capacitance to the dominant mode while only slightly affecting the
capacitance of the next higher order mode.

Ferrite toroidal phase shifters also can be designed for operation in excess of one octave.
Because of the small gap spacing of ridged waveguide, the phase shifters are generally made in
rectangular waveguide. Dielectric slab center loaded rectangular waveguide would be readily
compatible with the ferrite toroidal phase shifter, but it is not a commonly used transmission
line. Since ridged waveguide is commonly used, it would be desirable to have compatibility, i.e.,
matching transitions, between ridged waveguide and ferrite toroidal loaded rectangular
waveguide. Dielectric loaded tapered transitions are possible, but the fabrication would be very
difficult. Also, a quasi-Tchebycheff transformer design should give better matching for given
length transitions. The latter approach requires transformer sections of dielectric loaded ridged
waveguide, but analysis of this type of transmission line is not currently available in the litera-
ture. The analysis in this report employs an equivalent transmission line circuit for the
transverse component of the propagating electromagnetic wave to derive solutions for the TE,,0
propagation constants in such waveguide.

Manuscript submitted January 27, 1977.
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ANALYSIS

TE-mode solutions for the dielectric slab center loaded rectangular waveguide of Fig. la
can be derived by using ABCD matrices [6] or by using an equivalent transmission line circuit
for the crossguide component of the electromagnetic wave. The homogeneous double-ridged
waveguide of Fig. lb has been analyzed [1,2] by using the latter method in conjunction with
the equivalent discontinuity susceptance due to the height change at the ridge wall.

(a) Dielectric slab center loaded rec- (b) Double-ridged waveguide
tangular waveguide

Fig. I -Broadband Waveguide cross sections

For the dielectric slab center loaded double ridged waveguide of Fig. 2, the analysis is
similar to that for the homogeneous case, with an extra section incorporated in the equivalent
transmission line circuit. The dimensions referred to in all subsequent calculations are those
shown in Fig. 2. For simplicity, this report will consider only the case for TE,,o modes and will
assume that the transmission line is lossless, i.e., perfectly conducting waveguide walls and a
dielectric loss tangent of zero. Axial symmetry will also be assumed.

Er

Fig. 2 - Cross section of dielectric slab center loaded,
d b double-ridged waveguide

a

Cohn's article on ridged waveguide [2] points out that for the homogeneous case (i.e. Er =

1) the cross section may be treated at the cut-off frequency by assuming that it is an infinitely
wide, composite, parallel strip transmission line short-circuited at two points. The resultant
electromagnetic field may be considered as an electromagnetic wave traveling from side to side
without longitudinal propagation. The resonant conditions can then be solved for the cut-off
frequencies of the different TE,,0 modes.

A similar argument holds for the inhomogeneous case. In addition, the longitudinal pro-
pagation constant may be treated as the unknown quantity, and solutions at any frequency may
be obtained by separating the wave vector in each region into its transverse and longitudinal
components. Since the waveguide configuration is symmetrical, the resonance condition for the
transverse wave component will result in an infinite (zero) impedance at the center for n odd
(even). Half of a cross section is shown in Fig. 3a, and the equivalent transmission line circuits
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for the transverse wave are shown in Fig. 3b for n odd and Fig. 3c for n even. Since the
equivalent circuit is a composite, dissipationless, passive line matched at both ends, it is
matched at all points. Therefore, the sum of the admittances at the plane Y2 of the effective
lumped capacitance due to the ridge wall must equal zero. Within each region, where the re-
gions are shown in Fig. 3a, Z4, is the characteristic impedance, Y0j = 1/Zoi is the characteristic
admittance, and 0, is the transverse electrical length; 0, is equal to the product of the physical
transverse dimension of the region and yyi, the complex transverse propagation constant. Since
all regions are lossless, yyi, and therefore O0, will be purely real or purely imaginary.

region (1) (2) (3) Electric (n even)
or magnetic (n odd)

or wallI~~~~~~~~~~T X~~~ t/2a

as - | t3Y
Yl Y2

(a) Half cross section

YJ Y2 Y3 Y4 iY Y4

(b) Equivalent transmission line circuit (c) Equivalent transmission line circuit

for i odd for it even

Fig. 3 - Half waveguide cross section and equivalent transmission line circuits
for transverse wave

The reflected impedance Z presented by a load impedance ZL terminating a transmission
line of characteristic impedance Z4 with propagation constant v and length w is [71

(ZL + ZD )ev + (ZL -ZO)ew (1)

(ZL + Z4 )eY - (ZL -ZO )e- W

The short circuit at y1 in Fig. 3b will be reflected back to Y2 as ZI-2 where

ZI-2 = Z 0 ltanh IY a 2 - (2)

or

Yl-2 =Yolcoth YYI a 2S] (3)
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The open circuit at y4 will reflect back to y3 as Z4 - 3 with

Z4-3 = Z03 coth [Yy3 2 (4)

Equation (1) can be rewritten in the form

ZL cosh yw + Z4 sinh yw (5)

ZL sinh yw + Z4 cosh yyw

Since Z4-3 terminates region 2,

Z4-3 cOsh yY 2 S t + 4Z2 sinhIyy2 S |

Z4-2 = ZO2 1 (6)

Z4 3 sinh|y2 2 2 + Z42 sinh y2 - (6)

Using O0 = yi1w1 to simplify notation and substituting Eq. (4) into Eq. (6) yields

Z-2= ZO3 coth 03 cosh 02 + Z42 sinh 02 (7)
4-03 coth 03 sinh 02 + Z42 cosh 02

or

42= Y24Z3 coth 03 sinh 02 + 4Z2 cosh 02 (8)

4YY 3 coth 03 cosh 02 + 4Z2 sinh 02

Since the sum of admittances at y2 must equal zero,

Y,-2 + jB + Y4-2 =0 - (9)
Substituting Eqs. (3) and (8) into Eq. (9) yields

c +3 coth 03 sinh 02 + 4Z2 cosh 02

4c3 coth 03 cosh 02 + Z42 sinh 02

or

412

Bh Y coth 03 sinh 0 2 + 0 cosh 02coth 01 + j + 02 Z = 0. (11)
°l ° Yo I coth 03 cosh 02 + Z sinh 02

403

Since region 1 and region 2 have the same propagation constant, yyl = vy2, the impedances
are proportional to the heights:

42O YO2 d (12)

41 Y0o2 b'

Regions 2 and 3 have equal heights, and since the transverse wave is TE, the impedance ratio
is

4Z2 = yy3 (13)

ZO3 yy2

The left side of Eq. (11) may be rewritten as a single fraction. All terms in the denominator are
finite, so the numerator may be equated to zero. The resultant expression is
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sinh 0 1 [Yy2 cosh 03 sinh 02 + Y3 sinh 03 cosh 02 1 + cosh 0 1 + sinh 0

X 1Yy2 cosh 03 cosh 02 + Yy3 sinh 03 sinh 02 1 = 0 (14)
Mr

Within each region,

Y2i + y2 +Yzj = - 2/. 0e1 (15)

where

Ej = eO for i = 1,2

= ErEO for i = 3.

For TE modes, yxi = 0 for all regions and yzi =jf for all regions; /3 is the longitudinal propa-
gation constant (above cutoff) for the waveguide configuration. Substituting

yi = rP2 _ , 2 jA0 e1 for r) 2p 0 E; < p 2

=J 2 AO E - 2 for c2oLA E, e p 2 (16)

and

0, i=yjWj

with

wI = 1/2 (a -s)

w2 = 1/2 (s -t) (17)

w3 = 1/2 t

into Eq. (14) yields the transcendental equation in /3 that must be solved for TE0 O (n odd)
modes. The smallest root of Eq. (14) is the TE1 O solution, the next root the TE30 solution, etc.

For TE, Y (n even) modes, the analysis starts with the, equivalent transmission line circuit
of Fig. 3b and proceeds in a manner similar to the case for n odd. The resultant transcendental
equation is

b sinh 0oj [Yy2 sinh 03 sinh 02 + Yy3 cosh 03 cosh 02 ] + Icosh 01 + j X sinh 01J

X 1Yy2 sinh 03 cosh 02 + Vy3 cosh 03 sinh 02 1 = 0 (18)

with Eqs. (16) and (17) being applicable.

If Er = 1, it is straightforward to show that Eqs. (14) and (18) reduce to the expressions
for the odd and even mode cutoff frequencies, respectively, for double-ridged waveguide [1,2].
Also, if b = d, B. equals zero and Eqs. (14) and (18) result in expressions for the odd- and
even-mode propagation constants of dielectric slab center loaded rectangular waveguide identi-
cal to those obtained by use of ABCD matrices [6].

The discontinuity-susceptance term Be/Y01 is obtained from the Waveguide Handbook
[8]. Appendix A gives the necessary equations for calculating BI/ Y01 in terms of the
waveguide dimensions (from Fig. 2) and the effective wavelength X 9. Note that X g is the
wavelength of the wave component which is incident normal to the height change. Therefore
Xg of Appendix A is the wavelength of the transverse wave in regions l and 2, namely XA1.
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For standard (i.e. air filled) double-ridged waveguide Er = 1; thus

yYyl = y2 = yy3 APy

and Xyi = 2ar/13y is a real constant for a given configuration. However, for the general case
Er > 1 and

yyl = yy2 if yy3'

with the result that the values of yyi that satisfy Eq. (14) or (18), subject to (16) and (17), are
no longer constant but depend on the frequency. This is of course to be expected, since for
any nonhomogeneous waveguide a 1/ 1 - (fjif )2 term no longer describes the dispersive na-
ture. However, there is another problem because of the inhomogeneity. At all frequencies
above cutoff, the transverse wave propagation constant in the dielectric region will be entirely
imaginary; i.e.,

yy3 = jBy3 for co > (Ok

However, there is a critical frequency tocrit (Wcn, is greater than the cutoff frequency cw,; how
much greater depends upon the degree of dielectric loading) such that for frequencies greater
than w crl the transverse propagation constant in regions I and 2 is real, that is,

VYyl = y2 = ay, for t0 > (orit.

When C9 > OCrlf the transverse "wave" in these regions is no longer a resonant traveling wave
but rather the fields are decaying exponentially away from the dielectric region, and the con-
cept of wavelength in the region of the discontinuity is not meaningful. The expression for the
Bc1/Y01 term from Ref. 8 is no longer applicable; indeed, the validity of them equivalent
transmission line circuit for the waveguide height change (a shunt susceptance at the junction
of two transmission lines of unequal characteristic impedance) is questionable for operation
below cutoff. Also, the calculation for B./Y'0 1 is based on a model which assumes that the
waveguide extends to infinity in both directions away from the height discontinuity; in prac-
tice, the assumption is valid if additional mismatches are far enough removed from the height
discontinuity so that the local fields have decayed to small proportions. These local fields are
the evanescent modes of the fringing fields caused by the height discontinuity, and they decay
very rapidly.

Future investigation is planned to model an equivelent circuit of the waveguide height
change to include operation below as well as above the cut-off frequency, and to include the
proximity effects of waveguide walls and dielectric center loading. However, for this report the
following two engineering assumptions are made:

1. The BC/YOI term can be neglected for frequencies below the critical frequency. Since

B -0 as X - o'c(+)

and for w < rcri the fields of the transverse wave are decaying exponentially in the region of
the height discontinuity, a small shunt susceptance term will have only a minor effect on the
solution for /3. Equations (14) and (18) are transcendental equations and must .be solved by
some algorithm using trial values of is. If a trial value of p3 yields an imaginary transverse pro-
pagation constant in region 1, the Bc/Yo1 term is calculated with

vyl =jPyl and -yl = 2
Py'
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If the trial value of p results in y.l real, the B,./YO term is neglected, i.e. set equal to zero, in
Eqs. (14) and (18).

2. Proximity effects can be neglected in the calculation of Be./ Y01 .

Although the validity of these two assumptions may be questioned from a rigorous
theoretical aspect, the close agreement between calculated and measured values of j3 for
different configurations (shown in Figs. 4 and 5) indicates that both assumptions result in accu-
racy sufficient for most practical applications.

A listing of a computer program to solve for the principal (TE10 ) mode propagation con-
stant of dielectric slab center loaded double-ridged waveguide is given in Appendix B.

All discussions and calculations thus far have assumed a double-ridged waveguide
configuration. For the asymmetric or single-ridged waveguide configurations shown in Fig. 6,
Eqs. (14) and (18) remain valid; however, the expression for B,./YO must have Xyl replaced
by 1/2 XAy.

calculated

X X X X measured for .3"(7.62mm) length

0 0 0 0 measured for
1.16"(29.46mm)
length

Waveguide parameters

a = .507'(12.88mm)
b = .321"(8.15mm)
d = .226"(5.74mm)
s = .173"(4.39mm)
t = .101"(2.57mm)
er = 7

I I I 1

0(degrees/cm)

500

400

300

200

100

0

7.5 8 9 10 11 12 13 14 15 16 17 18

Frequency (GHz)

Fig. 4 - Calculated and measured values of /3 for dielec-
tric slab loaded double-ridged waveguide
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calculated

X x x x )( .easured for
.31(7.62,.) leeqih

measu red for
C) 0 0 0 0 1.16!(29.46..)

le-gthl

I I I I I
i 7.5 8 9 10 11 12 13 .

Frequency (GHu)

I I I I 1

14 15 16 17 18

Fig. 5 - Calculated and measured values of /3 for dielec-
tric slab loaded doubled-ridged waveguide

Fig. 6 - Cross section of dielectic slabLji | l center loaded single-ridged waveguide

CONCLUSION

Based on the equivalent transmission line circuit for the transverse component of the
propagating electromagnetic wave, expressions have been derived for the TE,,0 mode propaga-
tion constants of a dielectric slab center loaded ridged waveguide configuration. These expres-
sions are transcendental equations involving the propagation constant, but they can readily be
solved with a computer. Based on the agreement between calculated and measured data, cer-
tain assumptions made in the derivation appear valid. The analysis should prove useful in
designing transformers to match ridged waveguide to dielectric or ferrite slab center loaded rec-
tangular waveguide.
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Appendix A
EQUIVALENT CIRCUIT FOR A CHANGE IN HEIGHT

OF RECTANGULAR WAVEGUIDE

For a height change of rectangular waveguide as shown in Figs. Ala and Alb, the
equivalent circuit given by the Waveguide Handbook* is shown in Fig. Alc. The characteristic
admittances of the different height waveguides are Y0 and Y0, Tis the effective terminal plane,
B, is the effective shunt capacitive susceptance, and kg is the wavelength of the propagating
wave. The admittance ratio is

Yo=- d

yM b

and at the terminal plane T

Bc = In -2 + 4 a + Illntl +'| +2
Yo Xgn1 4aJ 2 aI 1i -al AA c2

b 2 l t4o, 15a2 - 1 +4 a2C

l[4XgJ( I (sa2~ ~

where

A ti+ia 2 R F I + 3a 2

A =1 - a

A' =1 + a12aA =an l

and

1 -1

1 + - d
X I1 +

1 - 1 I _ d 1
1 -a2

+ 3 + a 2

1 -( a2

C 4a 12
C 11 -a2JI 

The equivalent circuit is valid for b/kg < 1.

*N. Marcuvitz, Waveguide Handbook, MIT Radiation Laboratory Series, McGraw-Hill, New York, 1951.
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b d YO 1IY

T iBC

T T Ta IN

(a) Cross section (b) Side view (c) Equivalent circuit

Fig. A-I - Height change of rectangular waveguide and equivalent circuit
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Appendix B
FORTRAN LISTING OF COMPUTER PROGRAM

00100 C THIS IS PROGRAM DRIsIGDL.FOR - CWY -OCT 75
00200 INTEGER PIK
00300 REAL KXAIR
00400 PI=3.1415927
00500 C=2. 997925E+08
00)600 R1=39. 37008
00700 R2=2.0.R1
00800 RRMDI=180. 0'(PI*R1)
00900 01= (2. OE+09*PI'C)*.2
01000 NEWRUN= 0
01100 TYPE 600
01200 f 600 FORMAT C/"'' PROGRAM DRWIGDL/C WfYOCT 75''- COMPUTES
01300 1 TE10 CUTOFF FREQUENCIES AND PROPAGATION CONSTANTS OF"'
01400 2 ' SYMMETRIC DIELECTRIC LOADED DOUBLE RIDGED IdAVEGUIDE')
01500 105 TYPE 605
011600 605 FORMAT C.:. IdAVEGLUIDE DIMEN.SIONS IN INCHES - Ah! B r! :D!S
01700 READC59rABDYS
01800 106 TYPE 615
01900 615 FORMAT (C' RELATIVE DIELECTRIC CONSTANT OF CENTER
02000 1 LOADING = '$.)
02100 READ C5 !) EPSR
02200 TYPE 625
02300 6E25 FORMAT C' WIDTH IN INCHES OF CENTER LOADING =
02400 ACCEPT 6:30! T
02500 6:30 FORMAT 'TF8.3
02600 IF CT. LT. S5) GO TO 108
02700 TYPE 6:31
02E800 6:31 FORMAT C' DIELECTRIC WIDTH MUST BE LESS THAN
OEl900 1 RIDGE WIDTH ---- TRY AGAIN')
03S000 GO TO 105
03100 108 TYPE 606
0:32 00 `606 FORMAT C"'f DRWjGDL PARAMETERS ------- DIMENSIONS IN
0:--:300 1 INCHES' '8X' A 9X'B' 9X 'D ':-' 'S' 1E' T' 6X4HEPS '' X:)
0:3400 TYPE 607!ARBqD!S!T!EPSR
03500 607 FORMAT C4F1O.4,F13.4,F10.3)
03600 R=D'B
03700 RS=RE**2
OSS00 IFR=0
0-900 IFBCABSC'R-1.-0'0).LT.1.OE-06).IFR=1
04000 WI1= CA-S.) 'R2
Odo100 1d2= CS-T) 'R2
04200 W3=T'R2
04300 CEREST=1. + C1. '-R-1.) .CO: S (PI*(A-S /'C2 .*A)
04400 CLREST=CEREST+ CEPSR-1. )'JR.COS CRPI CA-T)/ C2. *A;)
04500 EDCTRY=CLREST'CEREST
04600 ALCEST=A.CLREST* CR+ Cl. -R *SI IN (PI* C(A-S:) '2.*A)))
04700 C THE ABOVE FOUR QUANTITIES ARE TO BE USED FOR CALCULATING
04800 C APPROXIMATE (STARTING VALUES) OF ClUTOFF FREQUENCIES AND
04900 C PROPAGATION COrSTANTS
05000 IBC=1

12
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FREQ=C*RlCALCEST4'2.OE+09)
DELBY=0.S31FREQ
BY=0.0
GO TO 112

109 IFCNEWIRUN.LT.2)GO TO 210
IFCFSTART.GT.FCGHZ)GO TO 220

210 TYPE 635
635 FORMAT C" FREQUENCIES IN GHZ - STARTPSTOPgINCREMENT: '$;

READ<C5p *)FSTARTqFSTOPp DELF
640 FORMAT CF9.3,1XF9.3,1XF9.3)
220 IFCFSTART.LT.1.OE-13)GO TO 180

IFCFSTART.GT.FCGHZ)GO TO 230
TYPE 645

645 FORMAT(' FREQUENCY MUST BE GREATER THAN CUTOFF')
GO TO 210
IFCFSTOP.LT.1.OE-13)FSTOP=FSTART-1.0

230 TYPE 655
655 FORMAT C/4X4HFREQ8X4HBETA9X3HGWL7X5HRATIO8X5HKXAIR/

1 5X3HGHZ6X6HDEG'IN6X6HINCHES4X8HGWL'FSWL7X6HR OR I/

110 IFREQ=0
FREQ=FSTART

111 IFREO=IFREQ+1
BY=PI .2.E+09'C*SORT(EDC TRY.CFREQ**2+FCGHZ**2))

C THIS IS A FIRST TRY FOR BETA
DELBY=-0.S31BY

112 ICROSS=0
ITAN=0
IBTRY=0

115 C1F=C1*FREQ*+2
CIFEP=C1F*EPSR

120 IBTRY=IBTRY+1
IFCIBTRY.LT.26)GO TO 122
TYPE 705

705 FORMAT C' MORE THAN 25 TRIES AT ROOT')
GO TO 170

122 BYSQ=BY--2
SX3SQ=C1FEP-BYSO
GX2SQ=C1F-BYSQ
GX3=SQRT CABS CGX3SQ))
GX2=SQRTCABSCGX2SQ))
IFCGX3SQ) 1309132w132

130 CHS3=SINH(CGX3.W3)
CHC3=COSHCGX3*W3)
IRGX3=1
GO TO 134

132 CHS3=SIN(CGX3*W3)
CHC3C=OS(CGX3W3)
IRGX3=-1

134 CONTINUE
IFCGX2SQ) 136! 138 138

13

05100
052 00
05300
05400
05500
05600
05700
05800
05900
06000
06100
06E200
06300
06400
06500
06600
067 00
06800
06900
07000
071 00
07200
07300
07400
07500
07600
07700
078O00
07900
08000
081 00
08200
083 00
08400
08500
08600
087 00
08800
08900
09000
091 00
09200
09300
09400
09500
09600
097 00
09800
09900
1 0)00
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10100 136 CHS2=SINHf;GX2EW2)
10200 CHC2=COSH(CGX2.Id2)
10300 CHS1=SINH CGX2*W l)
10400 CHC1=COSH(CGX2*Ell)
10500 KXAIR=GX2
10600 RIK=1HR
10700 IRGX2=1
10800 GO TO 140
10900 138 CHS2=S IN CGX2*W2)
11000 CHC2=COSCSGX2.W2)
11100 CHS1=SIN CGX2*W1I)
11200 CHCI1 =COS(CGX2*Wl 1
11300 IRGX2=-1
11400 KXAIR=GX2ERRMDI
11500 RIK=IHI
11600 140 BOY=0. 0
11700 IFCIFR.EO.1lGO TO 153
11800 IFCIRGX2.EQ.1)GO TO 153
11900 C CALCULATE EBY TERM
12000 P=Cl+R)iC1-R)
12100 GL=2.0-PI'GX2
12200 P2=SORT Cl.. 0- (B (CR1 +GL) ) **2)
1:D:ol0f0 PS3=SQRTCl. 0-CD'CR1 *'L)) *-.)
12400 PA=P**(2. 0+R)*(1 . 0+P2)/ (. 0-P2)- (. 0+3. 0S . 0-RS
12500 PAP=P-C (2. 0.R:) * (I . 0+P:3) 'C1. 0-Pi) + (3. 0+RS (C. 0-PS
12600 PC= Cf4 - 0*R(1 0-RS)'-*-2
12700 PT1=ALOGCCl . 0-RSf(4. 0R) *P C0. 5- CR+1 .0R))

12800 PTE=E 0. CPA+PAP+2. 0-PC) (FCPA.PAP-PC*.2) 
12900 PT:3= (B' CR1.4. 0*GL) ) .2. (1. 0'P) * C4. 0R)-.((5. 0.R
13000 1 - - 0 ; ft . 0-RS;+4 0.RS.FCifCS 0.PA' )
13100 BOY=2. 0B*(PT1+PT2+PT3::fCR1SL)
13200 C CALCULATE F(BETA)
1:300 153 FBETA=R*C-BOY*CHS 1 +CHC 1) C1X2'GX3*CC.CHC3HCHC2
13400 1 +IR:GX3.cHS:H5.CHS2) +IRGX2*CHS1.C>:2./G<3*flHC3-*+lH-2
13500 2 +IRGX2*IRGX3*CHS3.E:HC2)
13600 IFCIBC. EQ. 1)BY=FREO
13700 C ROOT SEARCH ROUTINE
13800 IF(CABS(CFBETAi .LT. OE-08)GO TO 170
12900 IFCIBTRY. EQ. )GO TO 16:::
14000 IFCITAN.EQ.i)GO TO 164
14100 IFCFBETAhFBOLD.LT. 0. 0)GO TO 161
14200 IF (ABSC (FBETAh) . GT. ABS CFBOLD)D DELBY=-DELBY
14300 GO TO 162
14400 161 DELBY=-DELBY
14500 ICROSS=1
14600 162 IF(CICROSS. E. 1)DELBY=0. 5DELBY
14700 163 BYNEW=BY+DELBY
14800 IFCABS C (BY-BYNEIdlBBY) .LT. 0 i)ITAN=l
14900 GO TO 166
15000 164 IF CABS(BY-BYOLD) .LT. I.E-05. ND. FBET9 LT. 1 E-06)GO TO 170

14
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15100 BYNEW=BY-FBETA*( BY-BYOLD) / CFBETA-FBOLD)
15200 166 BYOLD=BY
15300 BY=BYNEW
15400 FBOLD=FBETA
15500 IF(IBC.EQ.2G O TO 120
15600 FREQ=BY
15700 BY=0.0
15800 GO TO 115
15900 170 IFCIBC.EQ.2)GO TO 175
16000 FCGHZ=BY
16100 TYPE 658!FCGHZBOY
16200 658 FORMAT C" TElO MODE CUTOFF FREQUENCY IN GHZ = 'F7.4'
16300 1 B'Y = 'F7.3)
16400 IBC=2
16500 GO TO 109
16600 173 CONTINUE
16700 175 BYDI=BY-RRMDI
16800 GWL=360. 0'BYDI
16900 FSI.WL=R1*C' CFREQ*1. OE+ 09)
17000 RGLFS=GWL/FSWL
17100 177 TYPE 660PFREQ- BYDI GWLRGLFSKXAIR RIF(
17200 660 FORMAT ¢1X!FF7.3!3XF9.2,3XF9.4! 4XF8.4,3XF8.2, 1XA1)
17:300 IF CFREQ. GE. FSTOP) GO TO 180
17400 FREO=FREQ+DELF
17500 GO TO 111
17600 180 TYPE 665
17700 665 FORMAT C" ' WISH NEW PARAMETERS? NONE=0 ALL=1q
17800 1 CENTER LOADING=2E FREQ=3 'I$ )
17900 ACCEPT 670P NEWRUN
18000 670 FORMAT (II)
18100 GO TOC199 105 106.210180) NEIWIRUN+1
18200 199 CONTINUE
18:300 END

15
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parameters of k = I - 2 7r (0.000124) and G = 100 is shown in Figs. 4 and 5. Although the
LMS algorithm had unstable performance, the improved algorithm had completely stable per-
formance. Also, for slow loops there will be ringing in the LMS algorithm, which will result in
degraded cancellation performance. In a previous paper Kretschmer* investigated cascading
sidelobe canceler stages as a method of obtaining improved cancellation ratios and transient
responses. Thus a higher effective loop gain would be achieved with low actual loop gains,
which are required for stable operation. In lieu of their later work, the improved algorithm
provides another way of obtaining high loop gains. Lewis and Kretschmer are now working
on a open-loop digital implementation of a sidelobe canceler.

aS.

Io

35
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to

2
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Er
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Fig. 4 - Adaptive-canceler response of
the LMS algorithm

The sidelobe canceler removes the jamming signal after it has entered the main antenna.
Adaptive arrays, which require individual receiving elements, attempt to prevent jamming from
entering the antenna receive pattern by placing a receiving antenna null in the direction of the
jammer. Before commencing with a discussion of adaptive arrays and radars, it is pointed out
that the September 1976 issue of the IEEE Transactions on Antennas and Propagation is a spe-
cial issue on adaptive arrays and contains many interesting articles.

Adaptive Arrays and Radars

Qualitatively, in an adaptive array the received signal is the weighted sum of the signal at
the individual receiving elements, with the weights being a function of the received signal.
The theory of adaptive arrays was first discussed by Applebaum,t and Widrow et alA have

*F. F. Kretsctimer, IEEE International Radar Conf, 181-tR5, 1975.
tS. F. Applebaum, "Adaptive arrays," Syracuse University Rcsearch Corp. Report SPL-769,JJune t964.
I1B. Widrow, P. E. Mantey, L. J. Griffiths, and B. B. Goode, Proc. IEEE 55, 2143-2159 (19671.

6

-, D L)



NRL REPORT 81 17

Fig. 5 Adaptive canceler responseo ; t 
of the Kretschnier-Lewis algorithmi

0
a_

cmadex majorue n hse -et hc contriutns t the thoyhwvraltrdevelopento Brena pnant andRed
defieyX showi bequiacmlent 11veto containing the prbaiityeo detpetio when thea noietr is gasiven

by

Z = S + X. {17)

To detect the signal S. the radar output is passed through a linear filter described by a weight-
hig vector W. Thus the output of the detector (the filter) is

Y = W"Z. (18)

Brennan and Reed showed that S/N at the output of the filter is

Si = TS-

t N|O We KW ~~~~~~~~~(19)

W - IKW

where mao asterisk indicates the complex conjugate and e is the noise covariance matrix,
KC= E[X X7), X having zero mean. Consequently what is required is the value of W that max-
imizes (19). If the Schwarz inequality is used, it can be shown that the maximum value of
(19t is S eKqSi andtt othis value is obtained when

W = a'KY-l S*, (20)

L. E t Brennan and 1h rS Reed, IEEE Trans. Aerospace and Electronic Syste ts AES-9l 237-252 (t973).

7
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where a' is an arbitrary nonzero complex number. This criterion has been known for some
time.* However, it is rarely used, since K is not known a priori; and if K is estimated, it has
been extremely difficult to invert K in real time.

What makes the Brennan-and-Reed approach different from other adaptive array process-
ing is not the ability to place spatial nulls in the direction of jammers but rather the temporal
processing that is equivalent to a motion-compensated MT] (moving-target indicator). The
compensated MTI behavior is obtained by selecting the proper steering signal S. The selection
of the steering signal Swill be illustrated for the case of an airborne coherent pulsed radar.

Assume that the return is range gated, there are NR range cells, and the return from the
jth cell is

Z(j) = X(j) ± SQ(). (21)

The return signal from the rth receiving element and inth time sample can be written as

Sr (in) = bre""m Y, r = ., X.N, (22)

where y = -47T VIT> is the doppler phase shift, with V being the relative velocity of the tar-
get, T being the time between transmitted pulses, and X being the radar wavelength. The
quantity br is

br =A,re f i r = 1,>s, (23)

where Ar is the signal amplitude at the rth element, 8 is a constant phase factor, and #a is the
relative phase between the target and the rth element. For a linear array with element spacing
d, the phase angles Or for a signal arriving at an angle 4, with respect to the array normal are

Or 277rd sina, r = 1, ... N. (24)

Thus the expected signal for a linear array can be obtained by substituting (23) and (24) into
(22).

Both clutter and target will have returns of the form of (22). Since the velocity of the tar-
get (and consequently the relative velocity IV) is unknown, it is impossible to specify S for the
optimal weighting given by (20). However, since (22) is computable for ground clutter as a
function of the radar-clutter-cell geometry, one selects a steering signal Swhich is orthogonal to
the ground-clutter vector S'. Thus the purpose of S is to reject the clutter, not to detect the
target. This is about as close to an optimal detector as one can obtain, since it can be shownl
that no uniform most-powerful test exists when the target velocity is unknown.

As an example let M 2 and assume ong wants to detect a target in a direction normal
to the direction of the platform velocity (the radar is sidelooking). Then r I, Arenas and
for uniform amplitude taper (A, = 1, r = 1,..., N) the clutter signal is

JaT = ea [ ... , 1,1, ... , I 1. (25)

The appropriate steering signal S which is orthogonal to .V, STS' = 0, is

sar= e1s MW-9, ,1 , - 12 (1] (26}

t1{. L. VanTrees, IEEE Trans. Military Electronics MIL-9, 216-229 (1965).

8
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which corresponds to a target at 1/2 the blind speed of the radar:

V - I 12 1 (27)

Thus, if (26) is used in (20), the detector is optimized for canceling main-beam clutter. We
now consider how (20) can be implemented adaptively.

Brennan and Reed use the method of steepest ascent to maximize S/N:

F - -WTS- 2 (28)
WT'KW

The recursive algorithm for steepest ascent is

W-tl+ I) W () + I I- (])VFI[W(j)], (29)

where 7Ft W(j) I is the complex gradient of F evaluated at W(j), which has been shown to
be

VF = 2 1 W TS I [S _[ W TS* I K W] (30)
WTKWJ WT'KW

If K is assumed known and A (J) is chosen to be a constant, one can apply known theorems*
to show W(j) approaches a critical point as a limit. Thus, if W(0) is sufficiently close to the
optimal value, WQj) approaches aK-IS* in the limit.

The trouble with using (30) in (29) is that VFis a nonlinear function of W(j), which in
some adaptive systems can cause computational difficulties. Hence the algorithm was linear-
ized by noting

Wi WTS Ia.3T
WT'KW a,

Thus, if u (J) equals a constant gu, (29) reduces to

V(j-t-l ) = WQ(J) + a [S4 -a*K(I) W(j) 1. (32)
where K(j) is a statistical estimate of the unknown covariance matrix K. The best
(maximum-likelihood) estimate of K is

K(j) = Z*v(j)ZT(j). (33)

Brennan and Reed then showed that (32) converged. Specifically, the expected value of (32)
converges to ak -1S*, where K = E{K(i)I for all j, if Z(j) are independent and 0 < A <
2a'2 /max Xi, where XA (i = 1, .. a, ') are the eigenvalues of K

The block diagram of the adaptive radar is shown in Fig. 6, and the implementation of an
adaptive loop is shown in Fig. 7. The steady-state antenna pattern can be calculated from (20),
and the S/N improvement can be found from STK IS+. However in many radar environ-
ments the clutter has a temporal and spatial variation; consequently the rate of covergence is
important. To study this phenomena, computer simulations were used.

'M. J. D. Powell, SIAM Rev. 12, 79-97 (1970).
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Vnk

Fig. 7 - Implementation of an adaptive loop. (From L. E.
Brennan, i. D. Mallent, and 1 S. Reed, IEEE Trans. Anten-

Snk i 1 nas and Propagation AP-24, 607-615 (1976), courtesy of the
Vz 1k Ax Institute of Electrical and Electronics Engineers.)

The basic parameters for a ten-element adaptive array using only one time sample (N=
10 and M = 1) are given in Table 1. In the first simulation, 30 discrete clutter points were uni-
formly distributed in the two symmetrical intervals [17°, 9001 and [ -17°, -90°], and the radar
was looking normal to the aircraft velocity vector. The simulation results are summarized in Fig. 8,
where the base of the plot is 45 dB below the peak gain. The back antenna pattern is the ini-
tial receiving pattern, the middle eight patterns are from range cells 200 to 1600 in 200 range-
cell intervals, and the last pattern is the steady-state pattern. Since there are 30 interference
sources and only 10 elements, it is impossible to put a null at each intereference angle. Rather
the adaptive array follows two strategies: it widens the main beam and consequently lowers
the general sidelobe level, and it places receiver nulls at transmitter maximums and vice versa.
After 1600 interactions all but 1.6 dB (27.3 - 25.7) of the maximum signal-to-clutter improve-
ment has been obtained.

In the second simulation the 30 clutter points were placed nonsymmetrically about zero
in the interval [150, 450]. The simulation results are summarized in Fig. 9. Although the
sidelobes are reduced in the proper angular interval, after 1600 iterations only 24.7 dB of the
possible 44.1-dB improvement in the signal-to-clutter ratio has been obtained. Brennan and
Reed have shown that the time behavior of the weights is a sum of exponentials of the form

WI= C1 eH (GIl)T (34)
lAl

where T is the time constant and G is the gain of the low-pass filter. Thus the rate of conver-
gence is controlled by the smallest eigenvalue of K; specifically, the effective time constant is
7/ (GXrnin + I ). This suggests that rapid convergence can be obtained by selecting G to be
large and/or r to be small. However this is not a useful solution to the convergence problem,
since Brennan et al.* have shown that the total output noise power in the adaptive array is

r = wTKW i1 + 2 I % \x j (35)

*L. E. Brennan, E. L. Pugh, and 1. S. Reed, IEEE Trans. Aerospace and Electronic Systems AES-7, 254-262 (1971).
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Table 1 - Parameters Assumed in a
Simulation of an Adaptive Receiving Array

Ten-element linear array
Element patterns isotropic over -ir/2 > v •< rl2
Half-wave-spaced elements
Uniformly illuminated transmit array
30 scatterers in the sidelobe region, equally spaced in angle
No interference for -O I < 0 C 0o

Each receiving-element weight controlled adaptively
Simulation of 1600 independent sets of input signals (range

resolution cells)
No receiver noise

Fig. 8 - Projectograph plot of the gain
of a ten-element adaptive array in [he
Vase of symmetric etutrer distribution.
The improvement in the signal-to-
sidelobe clutter ratio from the initial re-
ceiving pattern (at the rear) is 27.3 dIB
for steady state (pattrcn aet the front)
and 25.7 dB after 1600 iterations.
(From L. E. Brennan and L. S. Reed,
IEEE Trans. Aerospace and Electronic
Systems AES-9, 237-252 (1973), coar-
tesy oF the Institute of Electrical and

Electronics Engineers.)

Fig. 9 -Projectograph plot of the gain
of a ten-elernent adaptable array in the N1
case of nonsymmetric clutter distribu-
tion. The improvement in the signal- [
to-ideloobe clutter ratio is 44.1 dB for
steady state fnot shown) and 24.7 dB
after 1600 iterations (pattern at the
front). (From L. E. Brennan and L. S. I
Reed, IEEE Tvans. Aerospace and
Electronic Systerns AES-9, 237-252
(1973), courtesy of the Institute of
Electrical Engineers.) \

12



N RL REPORT 81 17

where W is the average weight vector in the absence of loop noise (departure from steady
state). The quantity WTKW is the noise power when W = K-1 S*. Consequently, the output
power has been increased by the factor G EX1/2T due to loop noise. Thus, when K contains
both small and large eigenvalues, it is impossible to select a G and T which yield both rapid
convergence and low loop noise. To avoid the convergence problem, Reed et a[* have sug-
gested a direct computation of the weights.

The maximum-likelihood estimate of K, assuming the noise is Gaussian distributed, is

K = ± t Z*(j)ZT(j). (36)

Since Z*(i)ZT(,j) is an n-by-/l matrix of rank 1, L must be )!n for the inverse to exist. Then
the filter has the form

w = K k-IS*. (37)

The output S/N for (37) normalized by the maximum S/N, STK IS*, which corresponds to
(20), is

p (K) = fI } A _ IA_(5Tk -Is*) 2

W =(STK-lS*) (ST_-KAKKAS*) (38)
The expected value of (38) is

Elf) (K)) = (L + 2 - 1)/ (L + I). (39)

Thus the average loss can be kept less than 3 dB (E{p (K)1 > 1/2) by letting L > 2n.

However, whereas the adaptive loops of Fig. 6 require n complex multiplications, the
sample-matrix inverse method requires approximately 11 complex multiplications. To reduce
the complexity of the method, one can update the covariance matrix using

K, = ( -ra)KJ _; + (VZ*(j)ZrT( , (40)
where a is the weight applied to the current sample. Then the inverse of K1 , given K1 l ist

K-a Ki| (1 | -i Z*(J)] [z~i )k-h] (41)
J(I -a T a l ) + (Xz FKj- Z 5 (j)

This method of updating the inverse requires approximately 2,n2 complex multiplications. The
average computation time for updating the weights W depends on how frequently they must
be updated. For example, depending on the radar environment, updating the weights every
PRF using (36) may be quite adequate; consequently the computation time may be less than
that of the adaptive loops.

Brennan et alA compared the convergent rates of the three methods using a computer
simulation illustrating airborne MTI performance. The results of the simulation are shown in

'1. S. Reed, J. D. Mallett, and L. E. Brennan, IEEE Trans. Aerospace and Electronics Systems AES-1O, 853-863 (1974).
tJ. M. Shapard, D. Edelblute, and G. Kinnison, Naval Undersea Research and Development Center Report NUC-
TN-528, May 1971.
XL. E. Brennan, 1. D, Mallett, and 1. S. Reed, IEEE Trans. Antennas and Propagation AES-24, 607-615 (1976).
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Fig. 10. In both instances, (al) forward looking and (b) sidelooking, the two methods of catcu-
lating K -I provide an excellent convergent rate. Figure 10 indicates an MTI gain of plus 100
dB, but in practice the MTI gain would be limited to a lower figure by internal clutter motion.

Most work on adaptive arrays and radars has been limited to theoretical studies. However
there has been some experimental work at Ohio State University,' the Naval Research Labora-
tory,f and the Wide-Aperture HF Radio Research Facility operated by Stanford Research Insti-
lutc.t§

Moving-Target Indicators

Moving-Target Indicators (N4Tls) were first investigated in the 1940's, and they have
been discussed in detail in the books by Skolnik#** and Nathansontt. The coherent MTI,
the most common MTI, uses an internal coherent reference source to distinguish a moving tar-
get from fixed clutter returns. The MTI signal is obtained by coherently subtracting the re-
turned voltages from successive transmitted pulses:

Z,' Q) 4 Zj, ) - 4 -l (A, (42)
where Z (i) is the ith returned pulse in the jth range cell. Larger clutter attenuations can be
obtained by using multiple pulses. The frequency (doppler) response of the MTI is that of a
bandpass filter.

The most serious problems associated with MTI are limiting and blind speeds. The first
of these can be covered very simply. In the classic paper of Ward and Shrader*t it was shown
that MTI improvement could be degraded by 20 dB in a three-pulse canceler by limiting the
clutter return. Their work showed that the degradation was fundamental to limiting and that
consequently a large dynamic range is required to avoid limiting.

The major problem with MIT1 is that blind speeds, corresponding to doppler frequencies
higher than Nyguist rate, occur at

VH = 2T = 1, 2, 3, (43)

Thus for an L-band (1.3-GHz) radar with a PRF of 300 pps the blind speeds occur at multiples
of approximately 70 knots. Because of the width of the clutter notch (rejection region of the
canceler), many air targets would not be detected. There are several solutions to the problem

*R. T. Compton, IEEE Trans. Antennas and Propagation AP-24,697-706 (t976).
tW. F. Gabriel, 'Proceedings Adaptive Antenna Systems Workshop Maych 11-13, Vol. ]", NRL Report 7803, Sept.
1974.
tL. J. Griffiths, IEEE Trans, Antennas and Propagalion AP-24, 707-720 (1976).
§T. W. Washborn and L. F. Sweeney, Jr., IEEE Trans. Antennas and Propagation &P-Z4, 721-732 (1976).

# M. 1. Skolnik, rhrductnon bo Raldar Sysretus, McGraw-Hill, New York, 1962.
*'M. 1. Skolnik, editor Radar Handbook, McGraw-Hill, New York, 1970.
ttF. F. Nathanson, Radar Design Prwzciples, McGraw-Hill, New York, 1969.
.Ti. R. Ward and W, W. Shrader, EASCON Convention Record, l68-173, 1968.
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Fig. 10 - Adaplivc performance as a function of the
number of samples (eight elements, two pulses, element
spacing = 0.5, interpulse motion = 0.2). (From L. E.
Brennan, J. D. Mallett, and 1. S. Reed, IEEE Trans. Anten-
nas and Propagaition AP-24, 607-615 (1976), courtesy of the
Institute of Electrical and Electronics Engineers.)
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of blind speeds in Wis. Among these are variable PRF, staggered-PRF MTI, and dual-
frequency MTI.

The simplest solution is to use a variable-PR F system. If an interpuise period of T is
used, a blind speed of V8 is obtained. Then, if the interpulse period is changed by a small
fraction l; the blind speed changes by the same fraction r; and the smallest common blind
speed is y/ /O - O. Thus, if an L-band radar has two PRFs, 300 pps and 270 pps, the blind
speed of the radar system is approximately 700 knots. There are two disadvantages of such a
system: (a) second-time-around clutter (clutter beyond the unambiguous ranger caused by
ducting at sea or high-altitude long-range clutter such as mountains and chaft) passes through
the MT1, and (b) the constant PRF for a two- or three-pulse burst makes the system more
vulnerable to jamming. The simple solution to (a), using an extra filler pulse (transmitting
three pulses but only using the last pulse out of a two-pulse MT), makes Situation (b) worse.

An elegant solution to the blind-speed problem is the staggered-PRF MITL. The basic
MITI configuration is shown in Fig. I . The interpulse durations Tr are constrained by the rela-
ion

FyT, =T 1' (44)
where FB is the first blind doppler frequency and 2, are integers for all A. Capon* showaed that
the optimal weights ta,1 for minimizing the output clutter residue while retaining some fraction
of the average gain of the filter (this constraint avoids the trivial solution a, = 0, for all 4l are
the components of the eigenvector associated with the smallest eigenvalue of the clutter co-
variance matrix. This procedure ignores what happens in the filter passband. H-siao and
Kretschmert developed a procedure for setting the interpose periods to minimize the RMS
passband ripple while maintaining the minimum clutter residue. A typical response is shown
in Fig. 12. The basic trouble with this system is that second-time-around clutter will not be
canceled.

A third solution to the blind-speed problem is the dual-frequency MTI first discussed by
Kroszczynskit§ and eater by fisiao# . The system works by transmitting two frequencies
whose ratio r is slightly less than I, filtering out the sum signal and retaining the difference sig-
nat. The system performance is basically that of a low-frequency radar; hence the blind-speed
problem is reduced. The detrimental factor is that the clutter improvement factor is reduced
by several dB. A typical filter response for a dual-frequency MTI is shown in Fig. 13.
Although the passband response is quite variable, no attempt has been made to reduce the
variation by changing r. Hsiao indicates that the staggered-PRF MT! is preferable to the dual-
frequency MTL. However this author believes that the dual-frequency MT] should not be dis-
carded that readily. An alternate solution, and possibly a better one, is to operate individual
MTls at the two frequencies.

*J, Capon, IEEE Trans. Information Theory IT-10, 152-1S9 (1964).
ti. K. ]lsiao and F. F. Kretshmer, Jr., The Radio and Electronic Engineer 43, 689-693 (1973)
t]. Kroszczynski, Radio and Electronic Engineer 34, t57-159 (1967).
§1. Kroszczynski, Radio and Electronic Engineer 39, 172-176 (1970).

#1. K. tsiao, The Radio and Electronic Engineer 45, 351-356 (1975).
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Fig. II -A staggered-PR F MTI filter.
(From J. K. lIsiao and F. F. Kretsch-
mer, Radio and Electronic Engineer 43,
689-693 (1973), courtesy or the Inslitu-
tion of Electronic and Radio En-
gincers,)

,,~~~~~~~~~~,... .
i, .

ft ; 

tT
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Fig. 12 - Frequency response for a
seven-pulse staggered-PRF MTI filter.
(From Efsiao and Kretschmer, Radio
and Electronic Engineer 43, 689-693
(1973), courtesy of the Institution of
Electronic and Radio Engineers.)
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Doppler Processing

An MTI canceler provides near optimal target detection in clutter but provides little or no
improvement against receiver noise. McAulay* formulated the problem als a classical detection
problem and showed that the optimal detector could be structured approximately as an MTI
canceler followed by a narrow-band doppler filter bank. This structure has (he practical advan-
rage of greatly reducing the dynamic range required at the input of the filter bank. In this
configuration, the MTI canceler provides improvement against clutter, and the doppler filter
bank provides improvement against noise.

The moving-target detector (MTD), developed by Lincoln Laboraiorytt for the FAA,
uses this type of' processing. During 1976 the MTD was tested with a modified FPS-18 radar at
the FAA Facility in Atlantic City, N.J. The modified FPS-1S radar is an S-band radar instru-
mented to 48 n.mi. The range cell is approximately 1/16 n.mi., the beamwithh is 1.5', the scan
rate is 15 rpm, and 20 pulses are returned as the radar sweeps past the target.

A block diagram of the MID signal processor is shown in Fig, 14. An azimuth cell is
defined as a half beamwidth (0.750) and contains ten pulses, with the time lapse for the ten
pulses being referred to as a coherent processing interval (CPI). In a CP1 the ten pulses are
passed through a lhree-pulse MTI canceler, and the eight output pulses (two pulses are needed
to load the MTI serve as an input to an eight-point FFT, the points being weighted to provide
low filter sidelobes. The radar PRF is changed from 1000 pps to 1150 pps on alternate CPMs to
avoid the blind-speed problem.

FROM

0OT DE 12!-US DISCRETEAN
RATEzCACEE FCORkER WEIGHTINtGRATE 8 :9 2 - v - TAF

MEMORY

760Ta RAIN aND

RANGE Q Z5BT ERO i T MAGNITUDE LEVTEL
CELLS -VADR 3 [S 'ELOC[TY

PWEREII_ FILTER MEASUREMENT

GROUND, .ttt
CtLUTTERTHEt0DN

RECURSIVE _ _

FILTER

Fig. 14 -MTD sigTgnl processor

'R. J. McAulay, Tech. Note I972-14, Lincoln Laboratory, Mass. Inst. of Tech., 1972
tR. M. O'Donnell, C. E. Muehe, M. Labitt, W. IH. Drury, and L. Cartedge, EASCON Convention Record 71-75, 1974
tC. E. Muche, L. Cartledge, W. }1. Drury, E. M. Hlorstetter, M. Labitt, P. B. McCorison, and V. 3. Sferrino, Proc. IEEE
62, 716-723, 0974).
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The 2.9 x 106 range-azimuth-doppler cells (760 x 360/0.75 x 8) are individually thres-
holded. In this process a clutter map is generated by weighting the radar return in the zero-
doppler filter over the last eight scans (32 s) using a digital filter. Thus tangential targets hav-
ing zero doppler can be detected if the target level exceeds the clutter-map level by a specified
constant. That is, tangential targets can be detected in spotty ground clutter by using the prin-
ciple of interclutter visibility*. The thresholds for filters 2 through 6 are set using a mean-level
threshold. Specifically the threshold for a given-number filter is basedt on the average return
in the given-number filter from the range cells < 1/2 n.mi. (eight cells) on either side of the
test cell. Since clutter spills over into filters I and 7, two thresholds are generated for these
filters. One threshold is based on the map, a second threshold is based on the mean level over
a range interval, and the higher of the two thresholds is used.

The MTD represents a great improvement in signal processing for FAA air-surveillance
radars. A good match of processor to radar has been designed, and component technology has
made the processing practical to implement. Presently, a second-generation MTD is being
designed. This MTD uses no MTI, but rather each filter is optimized to obtain the maximum
signal-to-clutter-plus-noise ratio for an assumed clutter spectrum.

Noneoherent Moving-Target Indicators

Noncoherent MTIs are described in Skolnik's Introduction to Radar Systems* and Radar
tlondbook.§ They differ from coherent MTI by not using an internal coherent reference source
but rather mixing the received signal with itself. Thus, when both clutter and a target are
present, the beat between them yields a return at the target doppler. On the other hand, when
only a target is present, the signal return is at zero doppler and cannot be detected. Conse-
quently, for noncoherent MTI to be useful, gating circuitry is required for passing the non-
coherent MTI output when clutter is present and passing the regular video when clutter is not
present. Generally fringe areas cause major problems for the gating circuitry, making perfor-
mance unacceptable.

A different kind of noncoherent MTI has been made possible by high-power microwave
sources.# Lewis and Cantrell** propose transmitting a short pulse and subtracting successive
noncoherent pulses. This is similar to an area MTI discussed in Introduction to Radar Systems~t
except that the short pulse enables the subtraction to be made on a pulse-to-scan pulse rather
than a scan-to-scan basis. Thus, with a I ns pulse and a PRE of 200 pps, all moving targets
above 60 knots can be detected; that is, there are no blind speeds.

*D. K. Barton and W. W. Shrader, EASCON Conv. Record 294-297, t969.
tDetails about various thresholding techniques can be found in the section on noncoherent processing
*M. T. Skolnik, Introduction to Radar Systems, McGraw-Hill, New York, 1962.
§M. 1. Skolnik, editor Radar Handbook, McGraw-Hill. New York, 1970.

#V. L. Granatstein, P. Sprangle, M. Herndon, R. K. Parker, and S. P. Schlesinger, J. Applied Physics 46, 3800-3805
(1975).
*B. L. Lewis and B. H. Cantrell, "Short Pulse Noncoherent MNTI, patent application, Navy Case 60372, NRL, Nov.
1975.
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NONCOHERENT DETECTION

The earliest noncoherent signal processing was performed by radar operators using visual
inputs from PPIs and A-scopes. Although operators can perform this detection task accurately,
operators are easily saturated and become quickly fatigued. To remedy this situation and to
provide quick reaction times, automatic detection and tracking (ADT) systems have become
quite popular during the 1970s. The statistical framework necessary for the development of
ADT was introduced to the radar community in the 1940s by Marcum*, and later Swerlingt
extended the work to fluctuating targets. They investigated many of the statistical problems as-
sociated with the noncoherent detection of targets in Rayleigh noise. Their most important
result was the generation of curves of probability of detection WD) versus signal-to-noise ratio
(S/N) for a detector which sums N enveloped detected samples (either linear or square law)
under the assumption of equal signal amplitudes. However, in a search radar, as the beam
sweeps over the target, the returned signal amplitude is modulated by the antenna pattern.
Many authors investigated various detectors (weightings), comparing detection performance
and angular estimation results to the optimal values. The detectors investigated included the
moving window, feedback integrator, two-pole filter, binary integrator, and batch processor.

In the original work on these detectors, the environment was assumed known and homo-
geneous, so that fixed thresholds could be used. However a realistic environment, containing
land, sea, and rain for example, will cause an exorbitant number of false alarms for a fixed
threshold system. Two approaches, adaptive thresholding and nonparametric detectors, have
been used to solve the false-alarm problem. Both solutions are based on the assumption that
homogeneity exists in a small region about the range cell that is being tested. The adaptive
thresholding method assumes that the noise density is known except for a few unknown
parameters. The surrounding reference cells are then used to estimate the unknown parame-
ters, and a threshold based on the estimated density is obtained. Non parametric detectors oh-
tain a constant false-alarm rate (CFAR) by ranking the test sample with the reference cells,
Under the hypothesis that all the samples (test and reference) are independent samples from
an unknown density function, the test sample has a uniform density function; consequently a
threshold which yields CFAR can be set.

Classical Theory

The radar detection problem is a binary-hypothesis-testing problem:

HO: no target present

or

Hi: target present.

Many criteria can be used to solve this problem, but the most appropriate for radar is the
Neyman-Pearsont criterion. This criterion maximizes PD for a given probability of false alarm

'J. 1. Marcum, IRE Trans. Information Theory 6, 59-267 (1960).
tP. Swerling, IRE Trans. Information Theory 6, 269-308 (1960).
t.) Neyman and E. S. Pearson, Biomelfika 20A, 175-240, 263-294 (1928L.
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(PI, ) by comparing the likelihood ratio (L) to an appropriate threshold T. A target is declared
present if

L (XI x, x1 ,...=x,-,1 1)> T, (45)
L(x1 ....- '0) = pp(x1 . x, x,,Ho)

where p(x, x, I HI ) and p (x . xl Ho ) are the joint densities of the n samples under the
conditions of target presence and target absence respectively. For a linear envelope detector
and white Gaussian noise the samples have a Rayleigh density under Ho and a Ricean density
under HIo, and the likelihood detector reduces to

RaeJo |72 | > T, (46)

where 10 is the Bessel function of zero order. For equal-amplitude (A, = A) small signal
pulses (Ai < < C-), the detector reduces to the square-law detector:

2XI x T. (47)

This detector and the linear detector were first studied by Marcum* and were studied in
succeeding years by numerous people. The most important facts concerning these detectors
are the following:

* The detection performances of the linear and square-law detectors are similar and are
close to the performance of the optimal detector.*

* Since the signal return of a scanning radar is modulated by the antenna pattern, only
0.84 of the pulses between the half-power points should be integrated, and the antenna beam-
shape factor (ABSF) is 1.6 dB.t The ABSF is the number by which the midbeam S/N must be
reduced so that the detection curves generated for equal signal amplitudes can be used for the
scanning radar.

* The collapsing loss for the linear integrator can be much greater than the loss for a
square-law integrators The collapsing loss is the additional signal required to maintain the same
PD and PfO when unwanted noise samples along with the desired signal-plus-noise samples are
integrated.

Most signal processors are required not only to detect targets but to make angular esti-
mates of the azimuth position of the target. Swerling§ calculated the standard deviation of the
optinal estimate by using the Cramer-Rao lower bound. The results are shown in Fig. 15,
where a normalized standard deviation is plotted against S/N per pulse. This result holds for a
moderate or large number of pulses integrated, and the optimal estimate involves finding the
location where the correlation of the returned signal and the derivative of the antenna pattern
is zero. Although this estimate is rarely implemented, its performance is approached by simple

*J. 1. Marcuni, IRE Trans. Information Theory 6, 59-267 (1960).
tL. V. Blake, Proc. IRE 41, 770-774 (1953).
tG. V. Trunk, Proc. IEEE 60, 743-744 (1972).
§P. Swerling, Proc. IRE 44, 1146-1155 (1956).
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20.

estimates, such
Fig. iS.

as the maximum-value and threshold-crossing procedures, as can be seen in

Integrators

Almost all signal processors use linear rather than square-law detectors, since a linear
detector is easily built by using a matched filter and a half-wave rectifier followed by a low-pass
filter. However many different integrators are used to accumulate the linear-envelope-detected
pulses. A few of the most common integrators are shown in Fig. 16. Some advantages and
disadvantages of these integrators are as follows.*tt

Moiing window

The moving window performs a running sum of N pulses; as the latest pulse is alidded to
the sum, the pulse that is N PRFs in the past is subtracted from the sum. The detection per-
formance of this detector is only 0.5 dB worse than the optimal detector which weights the re-
turned signal by the fourth power of the voltage antenna pattern. The angular estimate is ob-

*D. S. Palmer and D. C. Cooper, IEEE Trans. Information Theory IT-IO, 296-302 (1964).
tG. M. Dillard, IEEE Trans. Information Theory IT-13, 2-6 (1967).
tB. H. Cantrelt and 0. V. Trunk, IEEE Trans. Aerospace and Electronic Systems AES-9, 649-653 (1973).
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Fig, 16 - Common integrators

tained by either taking the maximum value of the running sum or taking the midpoint
between the first and last crossing of the detection threshold. Both methods have a bias of N1/2
pulses which is easily corrected. The standard deviation of the estimation error of both estima-
tors is about 20% higher than the Cramer-Rao lower bound. The major disadvantage of this
detector is that the last N pulses for each range cell must be saved. For radars with large
bearnwidths and thus many pulses, the moving window requires extensive hardware. However
with the lower cost and size of memory this disadvantage is rapidly disappearing.

Feedback integrator

The amount of storage required can be reduced significantly by using a feedback integra-
tor, which requires the storage of only one number. Although the feedback integrator applies
an exponential weighting into the past, its detection performance is only 1 dB less than the op-
timal integrator. Unfortunately difficulties are encountered when using the feedback integrator
to estimate the azinuth position. The threshold-crossing procedure yields estimates only 20%
greater than the lower bound, but the bias is a function of S/N and must be estimated. On the
other hand the maximum value, although having a constant bias, has estimates which are 100%
greater than the lower bound. This author's opinion is that this detector has limited utility.
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Two-pole filer

The two-pole filter requires the storage of an intermediate calculation in addition to the
integrated output. However with this rather simple device a weighting pattern similar to the
antenna pattern can be obtained; consequently good performance would be expected. The
detection performance is within 0.15 dB of the optimal detector, and its angular estimates are
about 20n/%; greater than the Cramer-Rao lower bound. If the desired number of pulses in-
tegrated is changed (because of change in rotation of the radar or use of another radar), it is
necessary to change only the feedback values K1 and K2, Their optimal values are set by

K1 = 2 e &ttf I cos (W 4 T) (48)

and

K = e -2/i .j,, d t (49)

where ' =0.63, Nw4 "r = 2.2, and N is the number of pulses between the 3-dB points of the
antenna.

Bovary Integrator

The binary integrator is also known as the dual-threshold detector, M-out-of-N detector,
or rank detector, The input samples are quantized to 0 or I depending on whether or not they
are less than a threshold T1 . The last N zeros and ones are summed and compared to a second
(detection) threshold T2 = M. The detection performance of this detector is 2 dB less than
the moving-window integrator because of the hard limiting of the data, and the angular estima-
tion error is 25N% greater than the Cramer-Rao lower bound. This detector is used because it is
easily implemented, it ignores interference spikes which cause trouble with integrators that
directly use signal amplitude, and it works extremely well when't the noise has a non-
Rayleigh density.

A comparison of the binary integrator (three out of three), the median detector (two out
of three), and the mean detector (moving window) in log-normal interference is shown in Fig.
17. The optimal binary integrator is much better than straightforward integration. The optimal
values for the second threshold were found by Schwartzt for Rayleigh interference and by
Schleher§ for log-normal interference.

Batch Processor

The batch processor is used when there are a large number of pulses in the 3-dB
beamwidth. If KN pulses are in the 3-dB beamwidth, K pulses are summed and either a 0 or I
is declared depending on whether or not the sum is less than a threshold Ti. The last N zeros
and ones are summed and compared to a second threshold M.

'D. (.C Schieher, IEEE 1975 International Radar Conf., 262-267, 1975.
tG. V. Trunk, 'Non-Rayleigh Sea Clutter: Properties and Detection of Targets." NRL Report 79&6t June 1976&
TM. Schwartz, IEEE Trans. Information Theory 2, 135-139 (1956).
§W. C. Schteher, IEEE t975 Iaternational Radar Conf., 262-267. 1975.
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The batch processor, like the binary integrator, is easily implemented, ignores interfer-
ence spikes, and works extremely well when the noise has a non-Rayleigh density, but further-
more in comparison with the binary integrator the batch processor requires less storage, detects
better (less than 2 dB from moving window), and estimates angles more accurately.

The batch proccessor has been implemented by the Applied Physics Laboratory* of
Johns Hopkins University with great success. To obtain a more accurate azimuth estimate,
they use

6= A, 0, (50)
L A,

where A, are the amplitudes of the sums greater than T1 and H. are the corresponding antenna
azimuth angles. When many pulses are on target (N > 20), this detector is generally favored
by this author.

False Alarms

If fixed thresholds are used with the previously discussed integrators, the detectors will
saturate the tracking computer associated with the system and disrupt the system. Three im-
portant facts should be remembered:

* It makes little sense to have an automatic detection system without an associated
tracking system;

* The sensitivity of the detector should be as high as possible without saturating the
tracking computer;

"Radar Processing Subsystem Evaluation', Vol. 1, APL Report FP8-T-013, Nov. 1975.
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G. V. TRUNK

* False alarms and false targets are not a problem if they are removed by the tracking
computer. Tracking (scan-to-scan processing) is the only way to remove stationary
point clutter or target MTI residues.

One can reduce the number of false alarms with a fixed-threshold system by setting a
high threshold, but this would reduce sensitivity in regions of Low-noise (clutter) return. A
detector is required which will detect a target when it has a higher return than its immediate
background. Two such types of detectors are adaptive-thresholding and nonparametric detec-
tors. Both of these detectors assume that the samples in the range cells surrounding the test
cell (called reference or neighboring cells) are independent and identically distributed; further-
more it is usually assumed that the time samples are independent. Both detectors test whether
the test cell has a return sufficiently larger than the reference cells. A survey of CFAR pro-
cedures can be found in HansenA.

Adaptive Thresholdinrg

The basic assumption of the adaptive-thresholding technique is that the noise density is
known except for a few unknown parameters. The surrounding reference cells are used to es-
timate the unknown parameters, and a threshold based on the estimated density is then ob-
tained. The simplest adaptive detector is the cell-averaging CFAR investigated by Finn and
Johnsont. If the noise has a Rayleigh density, only the parameter (r needs to be estimated,
since the mean of a Rayleigh distribution is (Tr,/2 and the variance is 2 (2 v-r/2).Thus,by
estimating the mean, one obtains an estimate or which can be used to set a threshold Tto yield
the desired Pf, However, since T is set by an estimate ue it must be slightly larger than the
threshold one would use if ar were known a priori. The raised threshold causes a loss in target
sensitivity and is referred to as a CFAR loss. This loss has been calculated by Mitchell and
Walkerd, and some results are summarized in Table 2. As can be seen, for a small number of
reference cells, the loss is large because of the poor estimate of ers

This thresholding technique is more effective in maintaining CFAR when it is applied to
the binary integrator or batch processor, as shown in Fig. 18. This is because when the
number of pulses integrated by the binary integrator is moderate, the Pj1 on a single pulse is
rather large; for example P1- = 0.1 for a single pulse yields P1a = 10-5 for a seven-out-of-
ten integrator. Thus, since most non-Rayleigh densities are Rayleigh-like to the 10th percen-
tile, this type of processor will maintain a low Pa in most non-Rayleigh environments. This
demonstrates a general rule: to maintain a low Pf, in various environments, adaptive thres-
holding should be placed in front of the integrator. For any noise distribution, CEAR can be
maintained by counting the number of ones out of the comparator per scan and using this
number to control K; that is, if the number is too large, K is increased.

Front-end thresholding, which maintains amplitude information by dividing the average
reference value into the test cell, was investigated by Hansen and Ward§ and is shown in Fig.
19. This type of processing is especially effective when there is strong interference which is
variable on a pulse-to-pulse basis.

'V. G. Hansen, IEEE International Conference on Radar - Present and Future, 325-332, 1973.
ttl. M. Finn and R. S, Johnson, RCA Review 29, 414-464 (1968).
*R. L. Mitchell and 1. K Walker, IEEE Tyans. Aerospce and Electronic Systems AES-7, 671.676 (1971).
NV. G. hlansen and H1. R. Ward, IEEE Trans. Aerospace and Electronic Systemns 3. 648-652 i1972).
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Table 2 - CFAR Loss for ffa = 10 6 and PD = 0.9

Number of Loss for Various Numbers
Pulses of Reference Cells (dB)

Integrated 1 2 3 5 10 -o

I - - 15.3 7.7 3.5 0
3 - 7.8 5.1 3.1 1.4 0

10 63 3.3 2.2 1.3 0.7 0
30 3.6 2.0 1.4 1.0 0.5 0

100 24 1 1.0 0.6 03 0

REFERENCE
CELLS -

Fig. 18 - Cell-avcraging CFAR implemented with the batch processor

Fig. 19 - Fronnt-end cell-averaging
CFAR receiver
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When the noise has a non-Rayleigh density, such as the chi-square density or log-normal
density, two parameters must be estimated, and the adaptive detector is more complicated. If
several pulses are integrated with any of the amplitude integrators, the integrated output will
be approximately Gaussian distributed. Then the two parameters which must be estimated are
the mean and the variance. These estimates are given by

X = - -x , (51)

and

-2 (522

where the summation is over the N range cells surrounding the test cell.

When successive pulses in the same range cell are correlated (as with returns from rain
or sea clutter), many false alarms will occur if only the mean value (51) is estimated. A thres-
hold of the form

T = X + K(r (53)
will provide a low for the amplitude integrators- moving window, feedback integrator, and
two-pole filter. Nothing can be done to the binary integrator to yield a low Pma in correlated
noise; thus it should not be used in this situation. On the other hand, if the correlation time is
less than a batching interval, the batch processor will yield a low PfW without modifications.

Nonparametric Detectors

The most common way nonparametric detectors obtain CFAR is by ranking the test sam-
ple with the reference cells. Under the hypothesis that all the samples are independent sam-
ples from an unknown density function, the test sample has a uniform density function. For
instance, with reference to the rank detector in Fig. 20, the test cell is compared to 15 of its
neighbors. Since in the set of 16 samples the test sample has equal probability of being the
smallest sample (rank 0 or equivalently any other rank), the probability that the test sample
takes on values 0, 1,..., 15 is 1/16. A simple rank detector* can be constructed by comparing
the rank (number of reference cells that the test cell exceeds) to a threshold K; and the output
is 1 if the rank is larger and 0 otherwise. The zeros and ones are summed in a moving win-
dow. This detector incurs a CFAR loss of about 2 dB and is extremely effective, if the time
samples are independent. Only certain values Of Pfo can be obtained. Thus, if the number of
pulses integrated is small, low Pf1 , values cannot be obtained.

If the time samples are dependent, the rank detector will not yield CFAR. A modified
rank detector, called the modified generalized sign testt (MGST) is an attempt to maintain a
low Pf and is that shown in Fig. 20. This detector can be divided into three parts: a ranker,
an integrator (in this case a two-pole filter), and a thresholding device. A target is declared
when the integrated output exceeds two thresholds. The first threshold is fixed (equals
A + Tj11K from Fig. 20) and yields CFAR when the reference cells are independent and
identically distributed. The second threshold is adaptive and maintains a low Pta when the

*V. G. Hansen and B. A. Olsen, IEEE Trans. Aerospace and Electronic Systems 4, 942-950 11971).
¶G0 V. Trunk, B. II. Cantrell, and F. D. Queen, IEEE Trans. Aerospace and Electronic Systems 1t, 574-582 (1974),
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the problem of convergent rate. The moving-target detector (MTD) is used as an example of dopp-
ler processing.

In the area of noneoherent detection, various integrators are discussed. Among these are the
moving window, feedback integrator, two-pole filter, binary integrator, and batch processor.
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SURVEY OF RADAR SIGNAL PROCESSING

INTRODUCTION

During the last decade considerable progress has been made in radar signal processing.
This progress is directly traceable to the lowered cost and increased speed of digital hardware
and computers and to more sophisticated techniques in adaptive processing and tracking sys-
tems.

This survey of radar signal processing will neglect waveform design and include the
track-while-scan systems. Waveform design will be neglected because it has received consider-
able attention elsewhere, with the books of Rihaczek* and Cook and Bernfeldt covering the
subject in detail. On the other hand, although track-while-scan systems properly fall under the
heading of radar data processing, it does not make sense to have an automatic detection system
unless it is accompanied by a tracking system. Therefore, since tracking is a necessary part of
the entire system, the survey will include it.

Thus this survey of radar signal processing will consider the three broad areas of coherent
processing (processing of amplitude and phase), noncoherent processing (processing of ampli-
tude), and track-while-scan systems. The subjects will be discussed in the same order as the radar
signal passes through the radar system. Specifically, in the area of coherent processing the sub-
jects of sidelobe cancelers, adaptive antennas, and MTIs (moving-target indicators) will be
covered. In the area of noncoherent detection, methods of obtaining a constant false-alarm
rate (CFAR) using either adaptive thresholding or nonparametric detectors will be emphasized.
The section on the tracking system will cover the tracking filter, correlation logic, track initia-
tions, maneuver-following logic, and a basic overview of an entire tracking system.

COHERENT PROCESSING

In the area of coherent processing, adaptive processing will receive considerable attention.
There are two approaches to adaptive processing: the method of maximum signal-to-noise ratio
(S/N) due to Howellst and Applebaurn§ and the least-mean-square method (LMS) due to
Widrow and Hoff#. The two methods, although appearing quite different, yield almost
equivalent results. So that both methods will be presented, the LMS method will be used dur-
ing discussion of sidelobe cancelers, and the method of maximum S/N will be used during dis-
cussion of adaptive arrays and radars. For adaptive radars special consideration will be given to

A. W. Rihaczek, Principles of High-Resolution Radar, McGraw-Hill, New York, 1969.
tC. E. Cook and M. Bernfeld, Radar Signals. An Inuroduction to Theory and Application, Academic Press, New York, 1967.
tP. W. Howells, IEEE Trans. Antennas and Propagation AP-24, 575-584 (1976).
§S. P. Applebaum, IEEE Trans. Antennas and Propagation AP-24, 585-598 (1976).

# B. Widrow and M. E. Hoff, IRE WESCON Conv. Rec., 96-104, 1960.
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the problem of convergent rate. Finally, MTIs will be discussed and the moving-target-
detector (MTD) system will be used as an example of doppler processing.

Sidelobe Cancelers

The basic idea of a sidelobe canceler (a device that attempts to eliminate interference
entering through the antenna sidelobes) is shown in Fig. i. The signal S of interest enters
through the main lobe of the antenna, and the jamming (interfering signal), which is much
stronger than the signal of interest, enters through the sidelobe of the main antenna. The aux-
iliary antenna is an omnidirectional antenna, and it will be assumed that the signal entering
the omnidirectional antenna is much smaller than the jamming J4 and can be neglected, since
the signal and jamming now have the same antenna gain. (The treatment of the signal in the
auxiliary channel can be found in Widrow et al.') The adaptive filter produces an output Y
which is as close as possible to the input jamming J. The filter output is then subtracted from
the main input, producing an output Z = S + J - Y. If the filter output is an exact replica of
J., the output is the desired signal S.

MAItN
ANTENNA

SIGA S + J TT

R FLTER YFig. I - Concept
! OUTPUT , of adaptive noise

canceling

JAMMING | ADAPTIVE l.
|SOURCE lFILTEt R v

AUXILIARY 
ANTENNA / ERROR C

The fitter is controlled by adjusting its parameters to minimize the output power. To
show that this minimization will force Yto be a replica of J, a development in Widrow et al.* is
repeated. First, assume S, J, and J, are zero-mean random variables, S is uncorrelated with J
and J, and Ja (and hence Y) is correlated with J. The expected output power is

E{Z2} = E[S2) + L U] - }92) + 2{tS(- Y)) = E4S2} + El(J - Y)2}. (1)

Adjusting the filter to minimize E{Z2 } is equivalent to minimizing El(J - Y)2), since Yis un-
correlated with S; that is, Y is the best least-squares estimate of the jamming J Furthermore,
since Z - S = J - Y, minimizing Et (J - y) 21 causes Z to be the best least-squares estimate
of the signal S.

The adaptive filter for obtaining a least-squares estimate of a desired signal S can be
described by a weighting vector W, where WT (w t, W n, . . . ), W, and Tdenotes the tran-
spose, operating on the input J, = X, X' = (x,...,x,,). Thus the filter output is

Y = XTW, (2)

'B. Widrow, J. R. Glover, Jr., J.. I, McCool, a. Kaunitz, C. S. Williams, R. H. HeaM, . tR. Zeidter, BF Dong, R., anxd R.
C. Goodlin, Proc. IEEE 63, 1692-1716 (1975).
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and the error, defined as the difference between the input signal and the filter output, is

e = S + j - XTW. (3)
The least-mean-square (LMS) adaptive filter adjusts the weighting vector W to minimize the
mean-square error. The squared error is

E = (S + J) 2 -2 (S + J)XTW + WTXXTW. (4)

Taking the expected value of (4), letting the vector P be the crosscorrelation between J and X
( P = E(JX}), and letting the matrix K be the covariance matrix of X (K = E(XXT) ), one ob-
tains

E{E2) = E(S2) + E(J2} - 2PTW + WTKW. (5)

To find the minimum of (5) with respect to W, the gradient V of (5) is set to zero, yielding
the optimal weight vector

W = KP-P. (6)

The LMS adaptive algorithm is an iterative method of finding an approximate solution to
(6). The algorithm has the advantage of not requiring an explicit measurement of the correla-
tion function or inversion of the covariance matrix. Specifically, the LMS algorithm uses the
method of steepest descent to solve (6); that is, the next weight vector WI+1 is equal to the
old weight vector plus a step in the direction of the negative gradient:

WJ_+I = 14$ -uV 1 . (7)

The gradient of the squared error on the jth iteration is

V = Ve= V (S + J -XT W)2 -2E.x. (8)
Thus the next weight is given recursively by

Pj+l = W5 + 2gEtX, (9)

and is known as the Widrow-Hoff LMS algorithm. The parameter g is a factor which controls
the rate of convergence and the stability of the method. It has been shown*t that (9) con-
verges to the optimal solution as long as Ai is between zero and the reciprocal of the largest
eigenvalue of the covariance matrix K. Shown in Fig. 2 is a typical learning curve and an aver-
age of 48 learning curves for the LMS algorithm. The average reveals the basic exponential
nature of the learning curve. For the radar case Kj represents the sample from jth range cell;
consequently the number of iterations corresponds to the number of range cells.

In principal, if the situation shown in Fig. 1 is correct (no uncorrelated noise in each
channel and no signal in the auxiliary) the jamming can be completely canceled. However, if
the situation is as shown in Fig. 3, total cancellation cannot be accomplished. Specifically, the
performance of the canceler can be described by the ratio R of S/N at the output to S/N at the

*B. Widrow, P. E. Mantey, L. J. Grifliths, and B. B, Goode, Proc. IEEE 55, 2143-2159 (1967).
tR. L. Riegler and R. T. Compton, Jr., Proc. IEEE 61, 748-758 (1973).
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o se~~~~10 200
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Fig. 2 - Typical learning curves for the LMS algorithmn.
(From) B. W~idrrow et al., Proci IEEE 63, 1692-17L6 (1975),
courtesy of the Institute of Etectrical and Electronics En-
gineers.)
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primary input (main antenna). Widrow et al.* have shown that this ratio R fwor steady state
(after convergence) cart be expressed as

R = [A (z) + 1 [I(z) + I I
A(z) + A(z) B(z) + B(Z)' (10)

where A (z) and B(z) are noise-to-noise ratios

and

A (z) - SO (Z)/S, (Z)

B(z) = SI (z)/IS,, (z) H(z)1 2,

(0L)

(12)

*B. Widrow, J. R. Glover, Jr., J. M. McCool, J. Kaunitz, C. S. Witliams, R. H. Hearn, J. R. Zeidler. E. Dong, Jr., and R.
C. Goodtin, Proc. tEEE 63, 1692-1716 (1975).
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in which So, S17 and Sr are the power density spectra of the noises i 0 , in, , and n respectively
and H(z) is the channel transfer function for the correlated noise (jamming). It is obvious
from (10) that the cancellation is limited by the uncorrelated noise components in the primary
and reference channels. When the jamming is much stronger than the uncorrelated noise
components, A (z) and B(z) are small and

A (z) + Bz)' (13)

giving a large improvement in the output signal-to-jamming ratio. However the improvement
indicated by (13) is rarely achieved in practice. Factors limiting performance include the finite
time for the adaptive process, the presence of signal components in the auxiliary channel, mul-
tipath problems, and misadjustment caused by gradient estimation noise in the adaptive pro-
cess.* Furthermore, in theory N omnidirectional antennas (and associated cancellation loops)
are needed to cancel Njammers. However, because of multipath propagation, the energy from
a single jammer can enter the antenna from several directions and for all practical purposes ap-
pears to be from several jammers. Therefore in practice one requires several times as many
cancellation loops as jammers.

Recently F. Kretschmer and B. Lewist have developed an improved algorithm for simula-
tion of the Applebaum-Howells adaptive loop and for use in adaptive processing. The LMS al-
gorithm discussed above is given by

Wj+I = W. + 2 EX.jX. (9)

This is commonly used to simulate and analyze the Applebaum-Howells adaptive loop in the
form

W+l - kW,. + G(1 k)ejX 1 , (14)

where k = I - 1/r, with T being the filter smoothing constant, and G being the gain term.
Thus in both algorithms the next weight is derived in terms of the present error and sample.
Kretschmer and Lewis point out that for fast loops W>Hl as given by (9) and (14) is not the
proper weight. Rather, for better cancellation and more realistic canceler loop simulation,
PJ+I should be calculated from

TFJ+I= W. + 2SEj +jxl' (15)
In effect, by using the sample K1 to calculate the weight WM+<, a phase shift is introduced
which can result in loop instability. Kretschmer and Lewis have shown (for the Applebaum-
Howells application) that the stability condition of the LMS algorithm is

IG(1 -k)I Iy1 2 - kI < 1 (16)
and that their improved algorithm is unconditionally stable.

Comparison of the LMS algorithm with the improved algorithm was made using comput-
er simulations. Correlated Gaussian noise (mean = 0, variance = 2) was used as an input to
the main and auxiliary channels of the sidelobe canceler. At the 250th range cell a constant
signal at S/N = -20 dB is introduced. The signal residue for both algorithms with canceler

'B. Widrow, P. E. Mantey, L. J. Griffiths, and B. B. Goode, Proc. IEEE 55, 2143-2159 (1967).
tF. Kretschmer and B. L. Lewis, "An Improved Algorithm for Adaptive Processing," NRL Report 8084, Dec. 1976.
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